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Abstract 

This study focuses on estimating reliability functions for distributions within the location-scale family such as 

Normal, Exponential, and Extreme value distribution of type I for minimum that are commonly used in fields like 

physical and engineering sciences. Accurate reliability estimates are critical for applications in quality control, 

reliability engineering, hydraulic engineering design, and water resources management, where high-confidence 

interval estimates are often required from observed, sometimes censored, data. These estimates play a key role 

in making informed engineering decisions, ensuring safety, and optimizing investments. Estimating reliability 

functions helps assess product lifespan, supports maintenance planning, and addresses various failure patterns, 

from initial defects to long-term wear. These insights are crucial for minimizing operational disruptions, 

controlling costs, and informing strategic planning across industries where product dependability is essential, 

such as manufacturing, healthcare, and technology. Although reliability interval estimation is highly valuable, 

its development, particularly for confidence interval (CI) in location-scale distributions, has been relatively 

limited in research. This paper proposes a novel method to construct CIs for reliability functions in the location-

scale family where generalized pivotal quantities (GPQs) are available for the parameters. This approach is 

demonstrated through the construction of CIs for the reliability functions of several distributions, including 

Weibull, Pareto, Lognormal, Extreme Value Type-I, Exponential, and Normal, applicable to both complete and 

Type-II right-censored samples. Results from empirical evaluations indicate that this method achieves coverage 

probabilities close to the nominal level, even with small samples (as few as five observations) and high 

censoring levels (up to 70%). 

Keywords: Reliability, Confidence interval, Generalized Variable approach, Censoring, location-scale family of 

distributions.  

 

I. Introduction 

Location-scale family distributions, including the Extreme Value Type-I, Exponential, Normal and non-

location-scale family distributions, including two-parameter Weibull, Pareto, Gamma, and Lognormal, are 

extensively used across scientific fields such as biology, environmental and health sciences, physics, and social 

sciences. These models also play a pivotal role in meteorology, hydrology, and reliability theory, where they are 

standard tools for analysing time-to-failure data. Studies by researchers such as Grace and Eagleson (1966), 

Nathan and McMahon (1990), Kulkarni and Powar (2011) and Powar and Kulkarni (2015), among others, 

highlight the wide applications of these distributions across different domains. 

An essential aspect of using these distributions is estimating CIs for reliability functions, which 

provides valuable insights into product durability and informs strategies for maintenance in various sectors, 

including quality control, engineering, healthcare, and manufacturing. For example, in reliability assessments 

for light bulbs modelled by a Weibull distribution, where a scale parameter (2000 hours) and shape parameter 

(1.5) suggest a wear-out failure mode, key time intervals—early life, useful life, and wear-out—are analysed. 

In the early life phase, reliability assessments help identify initial failures, with an expected reliability 

of 0.9889 at 100 hours, suggesting high functionality in the initial period. During the useful life phase, with 

reliability around 0.7022 beyond 1000 hours, products maintain steady performance. Finally, as products enter 

the wear-out period, reliability declines, with an estimated 15.93% of bulbs expected to last beyond 3000 hours. 

This type of reliability interval estimation supports effective lifecycle management, maintenance 

planning, and cost optimization. By providing structured insights across operational phases, CI estimation for 

reliability functions in location-scale family distributions is invaluable for decision-making across fields where 

product longevity and reliability are critical. 

In reliability studies and life-testing experiments, researchers frequently face challenges in obtaining 

complete data on failure times for all tested units. For instance, clinical trials may experience participant 
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dropouts due to budget constraints, while in industrial settings, units might be terminated early to save time and 

reduce costs. Such instances result in what is termed "censored data." The two primary types of censoring 

encountered are Type-I and Type-II. 

Type-I censoring occurs when the experimental duration, T, is predetermined, but the number of 

observed failures can vary. In contrast, Type-II censoring involves a fixed number of failures, r, with the 

experiment’s duration allowed to vary until the specified number of failures is reached. The generalized variable 

(GV) method introduced in this study is tailored for Type-II singly right-censored samples, maintaining the 

relevance of pivotal quantities for maximum likelihood estimators (MLEs) within this setup. 

Distributions in the location-scale family, such as Normal, Exponential, and Extreme value distribution 

of type I for minimum and distributions in the non-location-scale family, such as the two-parameter Weibull, 

Pareto, Gamma, and Lognormal distributions, are widely utilized across disciplines to model data in reliability 

and life-testing studies. However, despite their extensive use, there has been limited focus on constructing CIs 

for reliability functions, particularly for small sample sizes. This research addresses this gap by proposing a CI 

estimation method for reliability functions in these families of distributions, aiming to provide an essential tool 

for accurate reliability assessments across various scientific and engineering applications. 

Regulatory standards frequently require accurate reliability estimates for certain distributions at 

extended time points, even when sample sizes are small to moderate. This presents a particular challenge for 

distributions within the location-scale and non-location-scale families, such as the Normal, Exponential, 

Extreme value distribution of type I for minimum, Weibull, Lognormal, and pareto, which are commonly 

applied in reliability studies. To address this, the objective of this paper is to present a method for constructing 

CIs that estimate the reliability of these widely used distributions. Our method is developed to achieve coverage 

probabilities that align closely with nominal values, accommodating both small sample sizes and various data 

conditions, including censored and uncensored cases, across different values of t. This approach provides a 

practical solution for more accurate reliability estimates across diverse applications. 

This study tackles the statistical issue of constructing CIs for reliability functions within widely used 

location-scale family distributions using the GV approach, originally proposed by Tsui and Weerahandi (1989) 

and later extended by Weerahandi (1993). The GV approach is instrumental in deriving GPQs, which are key to 

accurately estimating CIs for various parametric functions. For a more comprehensive understanding and 

applications of the GV method, readers may refer to Weerahandi’s foundational texts (1995, 2004) as well as 

practical illustrations by Hannig et al. (2006), which highlight its versatility and applicability.  

A generalized pivotal quantity (GPQ) is derived uniquely from observed statistics combined with 

random variables and operates independently of unknown parameters, differing from traditional pivotal 

quantities. The GV approach has a notable advantage, as it allows for the construction of a GPQ for a function 

of parameters by using GPQs specifically tailored for each parameter (Krishnamoorthy et al., 2009). This study 

introduces a GV-based approach to form two-sided CIs for the reliability functions of distributions within the 

location-scale family, provided GPQs are available for their parameters. The effectiveness of this approach is 

evaluated through numerical simulations across commonly used distributions, applied to both uncensored and 

Type-II singly right-censored sample data.   

The structure of this paper is organized as follows: Section 2 provides a review of the foundational 

concepts of GPQs and introduces the proposed methodology for constructing CIs for the reliability functions of 

location-scale and non-location-scale family distributions. In Section 3, we describe the process of deriving CIs 

for the reliability functions of some members of these families. Section 4 discusses the estimation of CIs 

through simulation experiments, with a focus on assessing the coverage probabilities. Section 5 concludes with 

final observations and recommendations. 

 

II. Confidence Interval Formulation Using the GPQ Approach: 

A GPQ, represented by 𝐺𝜃 for a parameter θ, is defined by the random variable (RV) 𝑇𝜃(𝑋; 𝑥), where X is a RV 

with a distribution influenced by both the target parameter θ and an additional nuisance parameter δ. The 

observed value of X is represented as 𝑥, and 𝑇𝜃(𝑋; 𝑥) must satisfy two key conditions: 

1. When 𝑋 = 𝑥, the value 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥) does not depend on the nuisance parameter δ, and often 𝐺𝜃 = 𝜃 

directly. 

2. For a given 𝑋 = 𝑥, the distribution of 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥) is entirely independent of any unknown 

parameters. 

 

2.1 Estimating Population Reliability: A New Confidence Interval Approach 

Consider a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 of size n taken from a distribution with a probability density function 

(pdf) 𝑓𝑋(𝑥; 𝜃), where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘) represents a vector of unknown parameters. Suppose that each 

component of 𝜃 ∈ 𝛩 ⊆  ℜ𝑘 has an associated GPQ, denoted by 𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
). Let 𝑅(𝑡, 𝜃) denote the 
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reliability function associated with X. Although 𝑅(𝑡, 𝜃) does not always have an analytical expression, it can be 

numerically calculated for specified values of t and 𝜃. We can express a GPQ for 𝑅(𝑡, 𝜃) as:  

𝐺𝑅𝑡
= 𝑅(𝑡, 𝐺𝜃), t > 0      (1) 

where 𝐺𝑅𝑡
 has a distribution independent of the parameter vector 𝜃. Based on this GPQ, a two-sided CI for 

𝑅(𝑡, 𝜃) at a confidence level of (1−λ)×100%, 0 ≤ λ ≤1, can be constructed as follows: 

1. For the observed data 𝑥 and the maximum likelihood estimates (or other suitable estimates) 𝜃0̂ of θ, 

repeat the following steps N times (e.g., N=10,00,000):  

I. Calculate the GPQs 𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
) for 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘), possibly using the 

approach suggested by Iyer and Patterson (2002). 

II. Use the expression (1) above to determine 𝐺𝑅𝑡
. 

2. The percentiles (100×λ/2) and 100×(1− λ/2) of the generated N values of 𝐺𝑅𝑡
 define the lower (L) and 

upper (U) bounds of the two-sided (1−λ)×100% CI for 𝑅(𝑡, 𝜃), denoted by [L, U]. This interval is referred to as 

the "Generalized Confidence Interval (GCI)" for 𝑅(𝑡, 𝜃).   

Inference based on GPQs is recognized for providing accurate results; see Roy and Bose (2009) for further 

details. 

 

2.2 Reliability CIs for Monotone Transformed Distributions with GPQs 

The following result provides a method for deriving the two-sided CI for the reliability function 𝑅(𝑡, 𝜃) of the 

distribution associated with any one-to-one monotonic transformation of the underlying RV. 

 

Theorem 1: Let X be a continuous RV with pdf 𝑓𝑋(𝑥; 𝜃), and reliability function 𝑅(𝑡, 𝜃), t > 0. Suppose that [L, 

U] is a two-sided GCI for 𝑅(𝑡, 𝜃). If Y=h(X) is a one-to-one monotonic transformation of X, and the inverse 

transformation X=h−1(Y) exists, then the two-sided GCI for the reliability function of the distribution of Y is 

given by: 

i. [h(L), h(U)] when h′(X) > 0 

ii. [h(U), h(L)] when h′(X) < 0 

 

The proof of the above theorem is direct and follows from standard principles in statistical inference. 

 

2.3 Estimating CIs for Reliability Functions in Location-Scale Families 

In this section, we utilize the proposed method to derive a two-sided CI for the reliability function 𝑅𝑌𝐿𝑆(𝑡, 𝜇, 𝜎) 

of a RV Y that belongs to the location-scale family. The cumulative distribution function (CDF) for Y is defined 

as: 

𝐹𝑌(𝑦, 𝜇, 𝜎) = 𝐹 (
𝑦−𝜇

𝜎
) ; −∞ < 𝑦 < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0   (2) 

where F (⋅) represents the CDF of Y when 𝜇 = 0 and 𝜎 = 1 and this form is independent of any unknown 

parameters. The two parameters (𝜇, 𝜎) are referred to as the location-scale parameters, with 𝜇 representing the 

location and 𝜎 representing the scale. When 𝜎 = 1, this forms a subfamily known as the location family, with 𝜇 

as the parameter. If 𝜇 = 0, it represents the scale family with 𝜎 as the parameter.    

Let 𝜇̂ and  𝜎̂ denote the MLEs for 𝜇 and 𝜎, respectively, derived from a complete sample or a Type-II singly 

right-censored sample where only the smallest r observations 𝑌(1) ≤ 𝑌(2) ≤ ⋯ ≤ 𝑌(𝑟) are available. For a 

complete random sample 𝑌1, 𝑌2, … , 𝑌𝑛 of size n, the pivotal functions 
𝜎̂

𝜎
, 

𝜇̂−𝜇

𝜎
, and 

𝜇̂−𝜇

𝜎̂
 are independent of 𝜇 and 𝜎, 

as shown by Antle and Bain (1969). This result implies that the ratio 
𝜇̂−𝜇

𝜎̂
 has the same distribution as 

𝜇̃

𝜎̃
 and the 

ratio 
𝜎̂

𝜎
 has the same distribution as 𝜎̃ where 𝜇̃ and 𝜎̃ are the MLEs based on a complete random sample with 

𝜇 = 0 and 𝜎 = 1. A similar result holds for a Type-II singly right-censored sample from the distribution in 

equation (2), as demonstrated by Lawless (2003, Theorem E2, p. 562).  

Using these results, the GPQs for  𝜇 and 𝜎 are given by: 

𝐺𝜇 = 𝜇̂0 −
𝜇̂−𝜇

𝜎̂
𝜎̂0 = 𝜇̂0 −

𝜇̃

𝜎̃
𝜎̂0    (3) 

𝐺𝜎 =
𝜎

𝜎̂
𝜎̂0 =

𝜎̂0

𝜎̃
      (4) 

where 𝜇̂0 and  𝜎̂0 are the observed values of 𝜇̂ and  𝜎̂, respectively. 

Finally, using equation (1), the GPQ for the reliability function, 𝑅𝑌𝐿𝑆(𝑡, 𝜇, 𝜎), of the location-scale family 

distribution, denoted as 𝐺𝑅𝑡𝐿𝑆
, is given by:   

𝐺𝑅𝑡𝐿𝑆
= 𝑅𝑌𝐿𝑆(𝑡, 𝐺𝜇 , 𝐺𝜎); t > 0     (5) 
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The following outlines the methodology to compute a two-sided (1− λ)100% GCI for 𝑅𝑌𝐿𝑆(𝑡, 𝜇, 𝜎) where t > 0, 

using the algorithm from Section 2: 

 

Algorithm to obtain two-sided GCI for 𝑹𝒀𝑳𝑺(𝒕, 𝝁, 𝝈): 

1. Sample Generation and Parameter Estimation: 

I. Generate n independent and identically distributed (iid) RVs 𝑦1, 𝑦2 , … , 𝑦𝑛 following the 

distribution defined in equation (2). 

II. Calculate the maximum likelihood estimates 𝜇̂0 and  𝜎̂0 for the location parameter 𝜇 and the 

scale parameter 𝜎, respectively. 

2. Monte Carlo Simulation Steps: 

For the estimated 𝜇̂0 and  𝜎̂0, perform the following steps repeatedly for a large number of iterations, say 

N=10,00,000:  

1. Generate a sample of n iid RVs 𝑦101
, 𝑦201

, … , 𝑦𝑛01
from the distribution in equation (2) with 

𝜇 = 0 and 𝜎 = 1. 

2. Compute the MLEs 𝜇̃ and 𝜎̃ for the generated sample.   

3. Determine the GPQs, 𝐺𝜇 and 𝐺𝜎  using equations (3) and (4).  

4. Use equation (5) to calculate the GPQ 𝐺𝑅𝑡𝐿𝑆
. 

3. Constructing the GCI: 

The two-sided (1− λ)100% GCI for 𝑅𝑌𝐿𝑆(𝑡, 𝜇, 𝜎) is given by:  

[𝐺𝑅𝑡𝐿𝑆
(

λ

2
) , 𝐺𝑅𝑡𝐿𝑆

(1 −
λ

2
)  ] 

where 𝐺𝑅𝑡𝐿𝑆
(λ) is the (100 × λ)th percentile of the 𝐺𝑅𝑡𝐿𝑆

 distribution. 

For a Type-II singly right-censored sample, the largest n−r observations are excluded. The MLEs (or equivariant 

estimators) 𝜇̃ and 𝜎̃ are then derived based on the smallest r values   𝑦(1) ≤ 𝑦(2) ≤ ⋯ ≤ 𝑦(𝑟). Nkurunziza and 

Chen (2011) introduced a method to construct GPQs 𝐺𝜇 and 𝐺𝜎  using Pitman estimators, which are also referred 

to as minimum risk equivariant estimators, for samples from equation (2). 

 

2.4  Application to Non-Location-Scale Distributions: 

Theorem 1 allows the transformation of a non-location-scale distribution into a location-scale form, facilitating 

the computation of GCIs for its reliability function. For example: 

i. Applying a logarithmic transformation (ln) can convert distributions such as two-parameter Weibull, 

Pareto, and Log-Normal into Extreme Value Distribution Type I for minimum (EVD-I), Exponential, and 

Normal distributions, respectively. 

ii. These transformed distributions are members of the location-scale family, making them compatible 

with the described approach for constructing GCIs. 

 

III. CI estimation of reliability functions of some popular distributions within the location-scale and non-

location-scale family: 

This section focuses on applying the proposed methodology to commonly used distribution families, such as the 

two-parameter Weibull, Exponential, Normal, Extreme Value Distribution Type I (EVD-I), Pareto, and 

Lognormal distributions, under scenarios involving complete samples as well as Type-II singly right-censored 

samples. 

 

2.5 CI for reliability function of Weibull distribution:   

The Weibull distribution, characterized by its scale parameter α and shape parameter β, has a pdf defined as: 

𝑓𝑋(𝑥; 𝛼, 𝛽) =
𝛽

𝛼
 (

𝑥

𝛼
)

𝛽−1

𝑒𝑥𝑝 (− (
𝑥

𝛼
)

𝛽

) ; 𝑥 > 0, 𝛼 > 0, 𝛽 > 0. 

We denote it as X → Weibull (α, β). The reliability function at t, for Weibull (α, β) distribution is,  

𝑅𝑊(𝑡, 𝛼, 𝛽) = 𝑒𝑥𝑝 (− (
𝑡

𝛼
)

𝛽

) ; 𝑡 > 0, 𝛼 > 0, 𝛽 > 0. 

For a complete sample, the MLE 𝛽̂ for 𝛽 is the solution to the equation: 

1

𝛽̂
−

∑ 𝑥𝑖
𝛽̂ 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1

∑ 𝑥𝑖
𝛽̂𝑛

𝑖=1

+
1

𝑛
∑ 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1 = 0     (6) 

with 𝛼̂ = (∑ 𝑥𝑖
𝛽̂  /𝑛𝑛

𝑖=1 )
1/𝛽̂

. 

For a Type-II singly right-censored sample, in which we observe only the smallest r observations, 𝑥(1) ≤ 𝑥(2) ≤

⋯ ≤ 𝑥(𝑟), the MLE for 𝛽 is found by solving the equation: 
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1

𝛽̂
−

∑ 𝑥𝑖𝑢
𝛽̂ 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑛

𝑖=1

∑ 𝑥𝑖𝑢
𝛽̂𝑛

𝑖=1

+
1

𝑟
∑ 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑟

𝑖=1 = 0    (7) 

and 𝛼̂ = (∑ 𝑥𝑖𝑢
𝛽̂ /𝑛𝑛

𝑖=1 )
1/𝛽̂

.  

Here, 𝑥𝑖𝑢 = 𝑥(𝑖) denotes the observed values in ordered form for i =1, 2,…,r and 𝑥𝑖𝑢 = 𝑥(𝑟) for i=r+1,…,n. The 

Newton–Raphson method can be applied to iteratively solve the equations (6) and (7), and softwares such as R 

and MINITAB provides tools to estimate these parameters directly. 

 

3.1.1 GPQs for parameters 𝜶, 𝜷, and 𝑹𝑾(𝒕, 𝜶, 𝜷): 

Krishnamoorthy et al. (2009) introduced GPQs for parameters 𝛼 and 𝛽 as follows. Let 𝛼0̂ and 𝛽0̂ denote the 

observed values of the MLEs 𝛼̂ and 𝛽̂, respectively. Then, the GPQs for 𝛼 and 𝛽 can be defined by: 

𝐺𝛼 = 𝛼0̂  (
𝛼

𝛼̂
)

𝛽̂/𝛽0̂
= 𝛼0̂ (

1

𝛼̃
)

𝛽̃/𝛽0̂
      (8) 

and 

𝐺𝛽 =
𝛽

𝛽̂
 𝛽0̂ =

𝛽0̂

𝛽̃
       (9) 

where 𝛼̃  and 𝛽  represent the MLEs of 𝛼 and 𝛽 based on a censored or uncensored sample from a Weibull (1,1) 

distribution. Using equation (1), the GPQ for 𝑅𝑊(𝑡, 𝛼, 𝛽) can be expressed as:  

 𝐺𝑊𝑅𝑡
= 𝑅(𝑡, 𝐺𝛼 , 𝐺𝛽) =  𝑒𝑥𝑝 (− (

𝑡

𝐺𝛼
)

𝐺𝛽
) = 𝑒𝑥𝑝 (− (

𝑡(𝛼̃)𝛽̃/𝛽0̂

𝛼0̂
)

𝛽0̂
𝛽̃

)             (10) 

To compute a two-sided (1− λ)100% GCI for 𝑅𝑊(𝑡, 𝛼, 𝛽) with t > 0, based on a complete sample, the following 

algorithm can be used. This method also applies to Type-II singly right-censored samples, using the relevant 

MLEs and GPQs. 

 

Steps of the Algorithm: 

1. Calculate the MLEs 𝛼0̂ and 𝛽0̂ for the parameters 𝛼 and 𝛽 from a sample 𝑥1, 𝑥2, … , 𝑥𝑛 of size n, 

assuming a Weibull (α, β) distribution. 

2. Given the values 𝛼0̂ and 𝛽0̂, repeat the following process N times (e.g., N=100,000): 

i. Generate n independent random values 𝑥111
, 𝑥211

, 𝑥311
, … , 𝑥𝑛11

 from a Weibull(1,1) 

distribution, then estimate 𝛼̃  and 𝛽, the MLEs for 𝛼 and 𝛽 from this generated data.    

ii. Use Equations (8) and (9) to compute the GPQs, 𝐺𝛼  and 𝐺𝛽. 

iii. Use Equation (10) to determine 𝐺𝑊𝑅𝑡
, the GPQ for 𝑅𝑊(𝑡, 𝛼, 𝛽).  

The (1− λ)×100% GCI for 𝑅𝑊(𝑡, 𝛼, 𝛽) with t > 0 can be expressed as follows: 

          [𝐺𝑊𝑅𝑡;λ/2,  𝐺𝑊𝑅𝑡;1−λ/2 ]               (11) 

where 𝐺𝑊𝑅𝑡;λ represents the (100× λ)th percentile of 𝐺𝑊𝑅𝑡
.  

 

2.6 CI for reliability function of Exponential distribution: 

We now examine a two-parameter Exponential distribution, represented as 𝐸(𝜇1, 𝜎1), with its pdf defined as: 

𝑓𝑋(𝑥, 𝜇1, 𝜎1) =
1

𝜎1

𝑒𝑥𝑝 (−
𝑥 − 𝜇1

𝜎1

) ; 𝑥 > 𝜇1, −∞ < 𝜇1 < ∞, 𝜎1 > 0, 

where 𝜇1 is the location parameter and 𝜎1 is the scale parameter. The reliability function at t, for 𝐸(𝜇1, 𝜎1) 

distribution is given by, 

𝑅𝐸(𝑡, 𝜇1, 𝜎1) = 𝑒𝑥𝑝 (−
𝑡 − 𝜇1

𝜎1

) ; 𝑡 > 𝜇1 

Consider a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 of size n drawn from the 𝐸(𝜇1, 𝜎1) distribution. The MLEs for the 

location parameter 𝜇1 and the scale parameter 𝜎1, denoted by 𝜇̂1 and 𝜎̂1, are given by: 

 

𝜇̂1 = 𝑋(1) = 𝑚𝑖𝑛(𝑋1, 𝑋2, … , 𝑋𝑛) 

 

𝜎̂1 =
1

𝑛
∑ (𝑋𝑖 − 𝑋(1))𝑛

𝑖=1   

 

The distributions of 𝜇̂1 and 𝜎̂1 are independent. Specifically, 
2𝑛(𝜇̂1−𝜇1)

𝜎1
~𝜒(2)

2  and 
2𝑛𝜎̂1

𝜎1
~𝜒(2𝑛−2)

2 , where 𝜒(𝜗)
2   

represents the chi-square distribution with 𝜗 degrees of freedom. Let  𝜇̂10 and 𝜎̂10 denote the observed values of 

𝜇̂1 and 𝜎̂1, respectively. Using these, the GPQs for 𝜇1 and 𝜎1 are expressed as follows:  
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𝐺𝜇1
= 𝜇̂10 −

2𝑛(𝜇̂1−𝜇1)

𝜎1

𝜎̂10
2𝑛𝜎̂1

𝜎1

= 𝜇̂10 −
𝜒(2)

2

𝜒(2𝑛−2)
2 𝜎̂10             (12) 

𝐺𝜎1
=

2𝑛𝜎̂10
2𝑛𝜎̂1

𝜎1

=
2𝑛𝜎̂10

𝜒(2𝑛−2)
2                 (13) 

In the case of progressive Type-II censoring, MLEs for 𝜇1 and 𝜎1 under a Type-II singly right-censored sample 

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑟) are given as: 

 

𝜇̂1𝑐 = 𝑋(1) 

 

𝜎̂1𝑐 =
∑ 𝑋(𝑖)

𝑟−1
𝑖=1 + (𝑛 − 𝑟 + 1)𝑋(𝑟) − 𝑛𝑋(1)

𝑟
 

 

It has been established that 𝜇̂1𝑐 and 𝜎̂1𝑐 are independent, with 
2𝑛(𝜇̂1𝑐−𝜇1)

𝜎1
~𝜒(2)

2  and 
2𝑟𝜎̂1𝑐

𝜎1
~𝜒(2𝑟−2)

2 . Let 𝜇̂1𝑐0  and  

𝜎̂1𝑐0 denote the observed values of these estimators. The GPQs for 𝜇1 and 𝜎1, based on this censored sample, 

can then be represented as:   

 

𝐺𝜇1
= 𝜇̂1𝑐0 −

2𝑛𝑟(𝜇̂1𝑐 − 𝜇1)

𝑛𝜎1

𝜎̂1𝑐0

2𝑟𝜎̂1𝑐

𝜎1

= 𝜇̂1𝑐0 −
𝑟𝜒(2)

2

𝑛𝜒(2𝑟−2)
2 𝜎̂1𝑐0 

 

𝐺𝜎1
=

2𝑟𝜎̂1𝑐0

2𝑟𝜎̂1𝑐

𝜎1

=
2𝑟𝜎̂1𝑐0

𝜒(2𝑟−2)
2  

 

Using Equation (1), the GPQ for the reliability function  

𝑅𝐸(𝑡, 𝜇1, 𝜎1) = 𝑒𝑥𝑝 (−
𝑡−𝜇1

𝜎1
) ; 𝑡 > 𝜇1 of the 𝐸(𝜇1, 𝜎1) distribution is defined as: 

𝐺𝐸𝑅𝑡
= 𝑅𝐸(𝑡, 𝐺𝜇1

, 𝐺𝜎1
) =  𝑒𝑥𝑝 (− (

𝑡−𝐺𝜇1

𝐺𝜎1

))                         (14) 

To calculate a two-sided (1−λ)100% GCI for 𝑅𝐸(𝑡, 𝜇1, 𝜎1) for  𝑡 > 𝜇1, the following procedure is outlined. This 

method is also applicable to Type-II singly right-censored samples by using the appropriate MLEs and GPQs for  

𝜇1 and  𝜎1. 

 

Algorithm: 

1. Generate a Sample: Simulate n independent RVs 𝑥1, 𝑥2, … , 𝑥𝑛 from the  𝐸(𝜇1, 𝜎1) distribution, and 

compute the MLEs 𝜇̂10 and 𝜎̂10. 

2. Perform Simulations: Using  𝜇̂10 and 𝜎̂10, repeat the following steps N times (e.g., N=10,00,000): 

a. Generate a random value from the 𝜒(2)
2  distribution. 

b. Generate a random value from the  𝜒(2𝑛−2)
2  distribution. 

c.  Calculate the GPQs 𝐺𝜇1
 and  𝐺𝜎1

 using the relevant equations. 

d.         Compute the GPQ  𝐺𝐸𝑅𝑡
 using Equation (14). 

3. Construct the GCI: The (1− λ)100% GCI for  𝑅𝐸(𝑡, 𝜇1, 𝜎1) is given by:  

      [𝐺𝐸𝑅𝑡;λ/2,  𝐺𝐸𝑅𝑡;1−λ/2 ]               (15) 

 where 𝐺𝐸𝑅𝑡;λ represents the (100×λ)th percentile of the simulated GPQ  𝐺𝐸𝑅𝑡
. 

 

2.7 CI for reliability function of Normal distribution: 

The pdf of a Normal distribution, denoted as 𝑁(𝜇2, 𝜎2), with mean (location parameter) 𝜇2 and standard 

deviation (scale parameter) 𝜎2, is given by: 

 

𝑓𝑋(𝑥, 𝜇2, 𝜎2) =
1

𝜎2√2𝜋
𝑒𝑥𝑝 (−

1

2
(

𝑥 − 𝜇2

𝜎2

)
2

) ; −∞ < 𝑥 < ∞, −∞ < 𝜇2 < ∞, 𝜎2 > 0 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n drawn from 𝑁(𝜇2, 𝜎2). The MLE for 𝜇2 is 𝜇̂2 = 𝑋̅ =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 . 

The MLE for 𝜎2
2  is 𝜎̂2

2 =
(𝑛−1)𝑆2

𝑛
, where 𝑆2 =

1

𝑛−1
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1 . Now define 𝑉2 = (𝑛 − 1)𝑆2, 𝑈2 = 𝑉2/𝜎2
2, 

and 𝑍 =
𝑋̅−𝜇2

𝜎2/√𝑛
. Let 𝑥̅ and 𝑣2 represent the observed values of 𝑋̿ and 𝑉2, respectively. It is established that 𝑈2 
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follows a chi-square distribution with n−1 degrees of freedom (𝜒𝑛−1
2 ), and Z follows a Standard Normal 

Distribution 𝑁(0, 1). Moreover, 𝑈2 and Z are independent. The GPQ for 𝜇2 is expressed as: 

         𝐺𝜇2
= 𝑥̅ −

𝑍

√𝑈2

√𝑣2

√𝑛
                (16) 

Here, Z and 𝑈2 are RVs simulated from their respective distributions. The GPQ for 𝜎2 is given by: 

𝐺𝜎2
=

𝜎2
2

𝑉2
𝑣2                (17) 

For a Type-II singly right-censored sample 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑟), the MLEs 𝜇̂2𝑐 and 𝜎̂2𝑐 for the parameters 

𝜇2 and 𝜎2 are obtained by solving the following equations numerically: 

∑ 𝐷(𝑖)
𝑟
𝑖=1 + (𝑛 − 𝑟)

∅(𝐷(𝑟))

Ф̅(𝐷(𝑟))
= 0              (18) 

−𝑟 + ∑ 𝐷(𝑖)
2𝑟

𝑖=1 + (𝑛 − 𝑟)𝐷(𝑟)

∅(𝐷(𝑟))

Ф̅(𝐷(𝑟))
= 0              (19) 

where 𝐷(𝑖) =
𝑋(𝑖)−𝜇2

𝜎2
 for i=1,2,…,r, ∅(. ) is the pdf of the standard normal distribution N(0,1), and Ф(. ) is its 

CDF. The survival function is represented as Ф̅(. ) = 1 − Ф(. ). 

Let 𝜇̂2𝑐0 and 𝜎̂2𝑐0 denote the observed MLEs obtained from the censored sample. The GPQs for 𝜇2 and 𝜎2 are 

then defined as: 

𝐺𝜇2
= 𝜇̂2𝑐0 −

𝜇̃2𝑐

𝜎̃2𝑐
𝜎̂2𝑐0 

  𝐺𝜎2
=

𝜎̂2𝑐0

𝜎̃2𝑐
 

where 𝜇̃2𝑐 and 𝜎̃2𝑐 are the MLEs obtained from a Type-II singly right-censored sample from N(0,1).  

Using these, the GPQ for the reliability function of 𝑁(𝜇2, 𝜎2), expressed as                        𝑅𝑁(𝑡, 𝜇2, 𝜎2) = 1 −

Ф (
𝑡−𝜇2

𝜎2
) ; 𝑡 > 0, is: 

𝐺𝑁𝑅𝑡
= 𝑅𝑁(𝑡, 𝐺𝜇2

, 𝐺𝜎2
) = 1 − Ф (

𝑡−𝐺𝜇2

𝐺𝜎2

) , 𝑡 > 0               (20) 

The procedure to compute a two-sided (1− λ)×100% GCI for  𝑅𝑁(𝑡, 𝜇2, 𝜎2) under the censored sample follows 

the same algorithm described in section 2.2 used for the complete sample case. The resulting CI is:  

[𝐺𝑁𝑅𝑡;λ/2,  𝐺𝑁𝑅𝑡;1−λ/2 ]              (21) 

where  𝐺𝑁𝑅𝑡;λ denotes the (100×λ)th percentile of the distribution of 𝐺𝑁𝑅𝑡
. 

 

2.8 CIs for reliability functions of EVD-I, Pareto and Lognormal distributions: 

Using one-to-one monotonic transformations, the Weibull, Exponential, and Normal distributions are mapped to 

the EVD-I, Pareto, and Lognormal distributions, respectively. Based on Theorem 1, two-sided GCIs are derived 

for the reliability functions of these transformed distributions. The transformation methods and the resulting 

GCIs are summarized in Table 1. 

 

Table 1: GCIs for reliability functions of EVD-I, Pareto, and Log-Normal Models 

 

Original distribution, notation 
Transformed 

variable 
Transformed 
distribution 

Transformed GCIs      (equation number) 

Weibull 

X → Weibull (α, β) 
log(X) EVD-I [𝑙𝑜𝑔(𝐺𝑊𝑅𝑡;λ/2),  log(𝐺𝑊𝑅𝑡;1−λ/2) ]    (22) 

Exponential 

X → 𝐸(𝜇1, 𝜎1) 
exp(X) Pareto [𝑒𝑥𝑝(𝐺𝐸𝑅𝑡;λ/2),  exp(𝐺𝐸𝑅𝑡;1−λ/2) ]    (23) 

Normal 

X → 𝑁(𝜇2, 𝜎2) 
exp(X) Lognormal [exp(𝐺𝑁𝑅𝑡;λ/2),  𝑒𝑥𝑝(𝐺𝑁𝑅𝑡;1−λ/2) ]    (24) 

 

IV. Evaluations of the CIs: 

This empirical study aimed to evaluate the performance of the proposed GCIs. For a significance level of 

λ=0.05, sample sizes n=5,15,25,50 and considering values of t such that reliability function takes the values 

0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 and the parameter configurations detailed in Table 2, a total of 1,00,000 

samples were simulated from Weibull, Exponential, Normal, EVD-I, Pareto, and Lognormal distributions. 

For each of the 1,00,000 samples, the lower and upper bounds (Li, Ui), where                                        i=1, 

2,…,1,00,000 of the two-sided GCIs were determined using Eqs. (11), (15), and (21) – (24). The coverage 
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probability, defined as the proportion of intervals that included the true value of the reliability function, was 

calculated for each of these GCIs. The study's goal was to assess the performance of the GCI estimators for 

different sample sizes (n) and values of t. 

Boxplots representing the percentage coverage probabilities for all parameter combinations from Table 2, 

corresponding to the above mentioned six proposed GCIs, are displayed in Figures 1 and 2 for complete 

samples. The GV method produced coverage probabilities that were consistently close to the nominal level and 

exhibited minimal variability. Therefore, the GV method is precise, as corroborated by the findings of Roy and 

Bose (2009). 

Based on the findings, the proposed GV method appears to be the only exact approach currently available and is 

strongly recommended for practical use.  

In the case of Type II censored samples, the proportions of censored observations, represented as 𝑃𝐶 =

𝑃𝑟(𝑋 ≥ 𝑋(𝑟)), are considered as 𝑃𝐶 = 0.3, 0.5, 0.7 based on the parametric combinations detailed earlier. For 

brevity of the manuscript, graphical representations of the results for 𝑃𝐶 = 0.3, 0.7 and n =5, 25, 50 are 

provided in Figures 3 to 5. 

          n=5  

 
 

n=15 

 
 

Fig. 1 Box plots of expected coverage probabilities (in percentage) for 95 % GCIs of reliability functions for the 

Weibull (W), Exponential (E), Normal (N), EVD-I (EV), Pareto (P) and Lognormal (L) distributions, for sample 

size n=5 and 15 over the range of the parameter configurations detailed in Table 2 and values of t such that 

reliability function takes the values 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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n=25 

 
 

n=50 

 
 

Fig. 2 Box plots of expected coverage probabilities (in percentage) for 95 % GCIs of reliability functions for the 

Weibull (W), Exponential (E), Normal (N), EVD-I (EV), Pareto (P) and Lognormal (L) distributions, for sample 

size n=25 and 50 over the range of the parameter configurations detailed in Table 2 and values of t such that 

reliability function takes the values 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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Fig. 3 Box plots of expected coverage probabilities (in percentage) for 95 % GCIs of reliability functions for the 

Weibull (W), Exponential (E), Normal (N), EVD-I (EV), Pareto (P) and Lognormal (L) distributions, for Type-II 

right censored samples of size n=5 with proportion of censoring PC = 0.3 and 0.7 over the range of the 

parameter configurations detailed in Table 2 and values of t such that reliability function takes the values 0.05, 

0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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Fig. 4 Box plots of expected coverage probabilities (in percentage) for 95 % GCIs of reliability functions for the 

Weibull (W), Exponential (E), Normal (N), EVD-I (EV), Pareto (P) and Lognormal (L) distributions, for Type-II 

right censored samples of size n=25 with proportion of censoring PC = 0.3 and 0.7 over the range of the 

parameter configurations detailed in Table 2 and values of t such that reliability function takes the values 0.05, 

0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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Fig. 5 Box plots of expected coverage probabilities (in percentage) for 95 % GCIs of reliability functions for the 

Weibull (W), Exponential (E), Normal (N), EVD-I (EV), Pareto (P) and Lognormal (L) distributions, for Type-II 

right censored samples of size n=50 with proportion of censoring PC = 0.3 and 0.7 over the range of the 

parameter configurations detailed in Table 2 and values of t such that reliability function takes the values 0.05, 

0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 

 

All the figures demonstrate that the proposed method maintains coverage probabilities close to 0.95, even for 

small uncensored sample sizes (as low as 5) and for censored samples with up to 70% censored observations. 
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Table 2 Parametric combinations chosen for various distributions 

Distribution Parameters chosen 

Weibull 

 

 

𝛼 = 0.5,1,2,…,15. 

𝛽= 0.3,0.5,1,2,…,10. 

Exponential 𝜇1= -3,-2,…,3,4,5.  

𝜎1= 0.5,1,3,5,10,11,…,15. 

Normal 𝜇2= -5,-4,…,5,6,…,10.  

𝜎2= 0.5,1,3,5,7,10,11,…,15. 

EVD-I 

𝑓𝑋(𝑥; 𝛼∗, 𝛽∗) =
1

𝛽∗
 𝑒𝑥𝑝 ((

𝑥 − 𝛼∗

𝛽∗
) − 𝑒𝑥𝑝 (

𝑥 − 𝛼∗

𝛽∗
)) ; 

−∞ < (𝑥, 𝛼∗) < ∞, 𝛽∗ > 0. 

𝛼∗= -7,-5,-1,1,5,9,10. 

𝛽∗= 0.3,0.5,1,3,5,7,10. 

Pareto 

𝑓𝑋(𝑥, 𝜇1
∗, 𝜎1

∗) =
𝜎1

∗

𝜇1
∗ (

𝑥

𝜇1
∗)

−𝜎1
∗−1

; 𝑥 > 𝜇1
∗, 𝜇1

∗ > 0, 𝜎1
∗ > 0. 

 

𝜇1
∗= 0.5,1,2,…,15. 

𝜎1
∗= 1,2,…,15. 

Lognormal 

𝑓𝑋(𝑥, 𝜇2
∗ , 𝜎2

∗) =
1

𝑥𝜎2
∗√2𝜋

𝑒𝑥𝑝 (−
1

2
(

log (𝑥) − 𝜇2
∗

𝜎2
∗ )

2

) ; 

−∞ < 𝑥 < ∞, −∞ < 𝜇2
∗ < ∞, 𝜎2

∗ > 0. 

 

𝜇2
∗= -5,-4,…,10. 

𝜎2
∗= 0.5,1,2,…,15. 

 

V. Overall conclusions 

This research presents a method for constructing CIs for the reliability functions of distributions with 

GPQs for their parameters. The method is demonstrated for the location-scale family of distributions under 

complete and Type-II censored sampling. It is simple to apply and delivers coverage probabilities that closely 

match the nominal level, even for small uncensored samples (as few as 5) and for Type-II right-censored 

samples with censored proportions up to 70%. The results from simulation studies validate the effectiveness of 

this approach. 
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